Rol	l No.		Total Pages: 03	2	(b)	Derive Schrödinger time dependent equation for
		BT-2/M-19	32023	-01		matter waves. 8
		APPLIED PHYSICS-II		4.	(a)	What are the limitations of old quantum
		AS-102N		⊘ •		theory ? Explain wave particle duality by giving
, Tim	ne : T	hree Hours] [Maxi	imum Marks : 75			examples.
Not	te:	Attempt Five questions in all, select	ting at least one		(b)	Explain the existence of neutrons, protons and alpha
		question from each Unit.				particles in the nucleus on the basis of Heisenberg
		United	9			Uncertainty Principle. 8
1.	(a)	Explain Diamond structure. Calcufraction.	late its packing			Unit III
	(b)	What do you mean by point def	ects in solids?	5.	(a)	Discuss quantum free electron theory of
		Derive an expression for Concentra	ntion of Schottky			metals. 8
		defects in a crystal.	8		(b)	Derive an expression for Density of states.
2.	(a)	Explain two and three dimensiona	l bravais lattice.		(-)	7
(ر. د	Postal	8			
	(ь)	Explain various lattice symmetry (operations. 7	6.	. (á)	Discuss the origin of energy bands in solids on the
		Unit II				basis of Kronig-Penney Model. 7
3.	(a)	What are De-Broglie Waves ?	Show that the		(b)	Discuss briefly the following:
		De-Broglie group velocity associate	d with the wave			(i) E-K diagram
		packet is equal to the velocity of	the particle. 7			(ii) Fermi-Dirac distribution function. 4×2=8
(3-43	V2) L	32023	P.T.O.			

L-32023

2

Unit IV

7.	(a)	What is	Meissner	Effect	?	Explain.
----	-----	---------	----------	--------	---	----------

- (b) Discuss various properties of nanomaterials.
- 8. (a) Explain Bottom-up and Ball milling method for synthesis of non-material with its advantages and disadvantages.
 - (b) Discuss various applications of superconductivity.

7

(3-43/3) L-32023

3